Answering Aggregate Queries with Ordered Direct Access

Idan Eldar

Joint Work: Nofar Carmeli, Benny Kimelfeld
Direct Access

Standard Practice
1. Run a full query computation
2. Construct an array-like structure
3. Retrieve a subset of the results

Alternative Approach
1. Construct a compact data structure supporting array-like access to the answers
2. Compute required results during access

database

full query results

\[O(n) \]

\[O(k) \]

\[O(n^k) \]

\[k \ll n \]
Target Complexity

Standard Practice
1. Run a full query computation
2. Construct an array-like structure
3. Retrieve a subset of the results

Alternative Approach
1. Construct a compact data structure supporting array-like access to the answers
2. Compute required results during access

\[
O(n^k) \quad \text{crsr.execute("query")} \quad \text{res = crsr.fetchall()} \quad \text{return res[start:start+10]} \quad O(n \log n) \quad O(\log n) \\
O(1) \quad \text{Read the data} \quad \text{Output a result}
\]

What complexity can we hope to achieve?

<table>
<thead>
<tr>
<th>Data</th>
<th>(O(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>(O(k))</td>
</tr>
</tbody>
</table>

We denote this time complexity \(\langle \text{loglinear}, \log \rangle\)
Conjunctive Queries

• State-of-the-art results concern conjunctive queries (Select-Project-Join)

• Example:
 \[Q(Hotel, City) : \neg \text{Flights}(Airline, City, Price), Hotels(Hotel, City) \]

• Conjunctive Queries:
 \[Q(\bar{x}) : \neg \phi_1(\bar{x}, \bar{y}), \ldots, \phi_l(\bar{x}, \bar{y}) \]

• Known Dichotomy:
 [Bagan, Durand, Grandjean CSL'2007]
 [Brault-Baron 2013]
 [Carmeli et al. PODS2021]

 If \(Q \) is acyclic free-connex, and the order has no disruptive-trio,
 then direct access for \(Q \) is in \(\langle \text{loglinear}, \text{log} \rangle \)

 Otherwise, direct access is not in \(\langle \text{loglinear}, \text{log} \rangle \) *

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
Aggregate Queries

• Conjunctive queries comprise only a subset of queries

• Example:

\[Q(\text{Hotel, City, Min(Price)}) : \neg \text{Flights(Airline, City, Price), Hotels(Hotel, City)} \]

• General Form:

\[Q(\vec{x}, \alpha(\vec{y}), \vec{z}) : \neg \phi_1(\vec{x}, \vec{y}, \vec{z}), ... , \phi_l(\vec{x}, \vec{y}, \vec{z}) \]

• Most common functions for \(\alpha \):
 • Min, Max, Sum, Avg, Count, Count Distinct (CountD)

• CQs are a particular case of ACQs
Aggregate Queries – Intractable

Non Acyclic Free-Connex ACQs*

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
Aggregate Queries Domain Split

Non Acyclic Free-Connex ACQs*

Aggregation is not part of the order

\[Q(\text{Hotel, City, Min(Price)}) \]

Aggregation is part of the order

\[Q(\text{Min(Price), Hotel, City}) \]

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
Aggregate Queries - Tractability

• Aggregation is not part of the order - $Q(\vec{x}, \alpha(\vec{y})): -\phi_1(\vec{x}, \vec{y}), ..., \phi_l(\vec{x}, \vec{y})$
• Acyclic free-connex ACQ Q
• No disruptive trio in \vec{x}

α is one of Min, Max, Sum, Count, Avg
Annotations

• In fact we prove an even stronger notion
• The CQs annotations framework allows tagging tuples with additional data and propagating it to the result

• Define the following:
 • Annotation domain - K
 • Projection propagation - \oplus
 • Join propagation - \otimes
 • Projection identity - $\overline{0}$
 • Join identity - $\overline{1}$

For every $k \in K$:

\[
\begin{align*}
 k \oplus \overline{0} &= k \\
 k \otimes \overline{1} &= k
\end{align*}
\]

[Green, Karvounarakis, Tannen 2007]
CQ* - Tractability

• Annotation is not part of the order - $Q(\vec{x}, *)$: $-\phi_1(\vec{x}, \vec{y})$, ..., $\phi_l(\vec{x}, \vec{y})$
• Acyclic free-connex CQ* Q
• No disruptive trio in \vec{x}

The \oplus, \otimes operations of $(K, \oplus, \otimes, \overline{0}, \overline{1})$ can be performed in $O(\log n)$
CQ*s to ACQs

• Many ACQs can be solved using CQ*s with a proper semiring

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>(N, +, ·, 0, 1)</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Sum</td>
<td>(Q, +, ·, 0, 1)</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Max</td>
<td>(Q \cup {$-\infty$}, max, +, $-\infty$, 0)</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Min</td>
<td>(Q \cup {∞}, min, +, ∞, 0)</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

The \oplus, \otimes operations of $(K, \oplus, \otimes, 0, 1)$ can be performed in $O(\log n)$

α is one of Min, Max, Sum, Count, Avg
CQ*s Domain Split - Progress

Non Acyclic Free-Connex CQ*s*

$O(\log n)$ time \otimes, \oplus

Aggregation is part of the order

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
ACQs Domain Split - Progress

Non Acyclic Free-Connex ACQs*

\(\alpha \) is one of Min, Max, Sum, Count, Avg

Aggregation is part of the order

Count Distinct

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
ACQs - Tractability

• $Q(x_1, ..., \alpha(y), x_{i+1}, ..., x_k): -\phi_1(x, \bar{y}, \bar{z}), ..., \phi_l(x, \bar{y}, \bar{z})$

• Acyclic free-connex ACQ Q

• No disruptive trio in \vec{x} when ignoring $\alpha(y)$

\[
\alpha \text{ is Count, Sum, Min or Max}
\]

Every atom ϕ_i contains either all or none of $x_{i+1}, ..., x_k$
CQ* s - Tractability

• $Q(x_1, ..., *, x_{i+1}, ..., x_k): -\phi_1(x, y), ..., \phi_l(x, y)$
• Acyclic free-connex CQ* Q
• No disruptive trio in \vec{x} when ignoring $*$

\otimes and \oplus can be computed in $O(\log n)$

Every atom ϕ_i contains either all or none of $x_{i+1}, ..., x_k$

* The semiring must be \otimes-monotone:
 (All of ours are)
CQ*s Domain Split - Progress

<table>
<thead>
<tr>
<th>Non Acyclic Free-Connex CQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(\log n)) time (\otimes, \oplus)</td>
</tr>
<tr>
<td>Every atom (\phi_i) contains either all or none of (x_{i+1}, \ldots, x_k)</td>
</tr>
</tbody>
</table>

| Order contains a disruptive trio* |

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
ACQs Domain Split - Progress

Non Acyclic Free-Connex ACQs*

- α is one of Min, Max, Sum, Count, Avg

 Every atom ϕ_i contains either all or none of x_{i+1}, \ldots, x_k

- Count Distinct

- Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
Intractability for CQ*s

• We can prove for our semirings a counter-example:

\[Q_x(*, x, y): \neg R(x), S(y) \]

Theorem: Direct access for \(Q_x(*, x, y): \neg R(x), S(y) \) is not in \(\langle \text{loglinear, log} \rangle^* \)

(over these semirings)

<table>
<thead>
<tr>
<th>Semiring</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\mathbb{N}, +, \cdot, 0, 1))</td>
<td>Count</td>
</tr>
<tr>
<td>((\mathbb{Q}, +, \cdot, 0, 1))</td>
<td>Sum</td>
</tr>
<tr>
<td>((\mathbb{Q} \cup {-\infty}, \max, +, -\infty, 0))</td>
<td>Max</td>
</tr>
<tr>
<td>((\mathbb{Q} \cup {\infty}, \min, +, \infty, 0))</td>
<td>Min</td>
</tr>
</tbody>
</table>

* Assuming 3SUM conjecture
CQ*s Domain Split - Progress

Non Acyclic Free-Connex CQ*s*

$O(\log n)$ time \otimes, \oplus

$O(\log n)$ time \otimes, \oplus
Every atom ϕ_i contains either all or none of x_{i+1}, \ldots, x_k

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
Local Annotations

• Can we do better with aggregation?
• Annotations derived from aggregation have a specific structure:
 • Only a single relation is annotated with non-identity values
• When only a single relation is annotated with non-identity values, we say the database is **locally-annotated**
Idempotency

• Some semirings have an \oplus operation with a unique property.
• An operation \oplus will be said to be idempotent if for every x
 $$x \oplus x = x$$
• Notable commutative semirings with idempotent \oplus:

(Q $\cup \{\infty\}$, $+$, Min, 0, ∞)	Min
(Q $\cup \{-\infty\}$, $+$, Max, 0, $-\infty$)	Max
(Ω, \cap, \cup, Ω, ∅)	CountD*

* $O(\log n)$ domain
Idempotent Dichotomy

- \(\text{CQ}^* Q (\vec{x}, \star, \vec{z}) \): \(\neg \phi_1 (\vec{x}, \vec{y}, \vec{z}), \ldots, \phi_l (\vec{x}, \vec{y}, \vec{z})\):
 - Free-connex acyclic
 - No disruptive trio when ignoring \(\star\)
 - Logarithmic-time semiring
 - \(\oplus\)-idempotent semiring

- For CQs we have a known dichotomy

Assuming it is possible to generate an infinite number of domain elements in ascending order
CQ*s Domain Split - Final

Non Acyclic Free-Connex CQ*s*

$O(\log n)$ time \otimes, \oplus

$O(\log n)$ time \otimes, \oplus

Every atom ϕ_i contains either all or none of x_{i+1}, \ldots, x_k

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
ACQs Domain Split - Final

Non Acyclic Free-Connex ACQs

- α is one of Min, Max, Sum, Count, Avg
- Every atom ϕ_i contains either all or none of x_{i+1}, \ldots, x_k

Count Distinct
- Sum, Count

Order contains a disruptive trio*

* No self-joins, assuming BMM, HYPERCLIQUE conjectures
Thanks For Listening

Any questions?