Motivation

- Dataset: collection of photos
- Query input: a photo
- Task: find relevant photos w.r.t. query
Motivation

- Dataset: fingerprints
- Query input: fingerprint obtained by a fingerprint scanner
- Task: identify person

Multimedia Database

- Data: objects from a multimedia data type
 - Images
 - Audio files
 - Videos
 - 3D objects
 - Text
- Operations
 - Insertions, deletions
 - Search for data
Motivation

- Similarity search: find similar objects to the query input

Organization of the Tutorial

- Part I: The similarity problem
- Part II: Indexing
- Part III: Similarity Join
PART I
THE SIMILARITY PROBLEM

The similarity problem

- Concept of similarity is inherently subjective
 - Matching parts between objects
 - Optimization problem: how much work do I have to do to transform one object into another one?
- Definition of “Similarity Model”
 - Domain of objects
 - Similarity (or dissimilarity) function
The similarity problem

- **Metric space approach** [ZAD+06]
 - Universe of objects: U
 - Dissimilarity function: $\delta: U \times U \rightarrow \mathbb{R}$
 - Non-negativity: $\delta(x, y) \geq 0$
 - Reflexivity: $\delta(x, y) = 0 \iff x = y$
 - Symmetry: $\delta(x, y) = d(y, x)$
 - Triangular inequality: $\delta(x, z) \leq \delta(x, y) + \delta(y, z)$

The similarity problem

- **Example: vector spaces**
 - Domain $U = \mathbb{R}^d$
 - d is the dimension of the space
 - Distance δ_{L_p} from Minkowski family of distances

$$\delta_{L_p}(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{1/p}, p \geq 1 \quad p = 1 \text{ Manhattan distance}$$

$$p = 2 \text{ Euclidean distance}$$
The similarity problem

- Other common metric distance functions

 Quadratic forms:
 \[\delta_{QF}(x, y) = \sqrt{(x - y)'A(x - y)} \]

 Earth Mover’s distance:
 \[\delta_{EMD}(x, y) = \min \left\{ \sum_{i=1}^{d} \sum_{j=1}^{d} c_{ij}f_{ij} \right\} \]

 subject to
 \[f_{ij} \geq 0 \]
 \[\sum_{i=1}^{d} f_{ij} = y_j, \forall j = 1, \ldots, d \]
 \[\sum_{j=1}^{d} f_{ij} = x_i, \forall i = 1, \ldots, d \]

Similarity search

- Search for “similar objects”
- Content-based search: query-by-example

 - **Range query** (give me the very similar ones – over 80%)
 - **k nearest neighbors query** (give me the 3 most similar)
Similarity search

- Range query

\[(q, r) = \{u_2, u_4, u_6, u_7\}\]

Similarity search

- k-NN query

\[3 - NN(q) = \{u_2, u_6, u_7\}\]
Similarity search

- Query-by-sketch

Figure from: Jose Saavedra and Benjamin Bustos. An improved histogram of edge local orientations for sketch-based image retrieval. In Proc. 32nd Annual Symposium of the German Association for Pattern Recognition (DAGM'10), LNCS 6376, pages 432-441, 2010.

Similarity search

- Efficiency
 - How much cost a similarity query
 - Can be measured as
 - CPU time
 - Number of distance computations
 - I/O time
 - Number of disk page accesses
Similarity search

- Effectiveness
 - Quality of the answer returned by a similarity search
 - Does the similarity model allow the user to retrieve relevant objects?

Effectiveness evaluation

- Measure the ability of the system to retrieve relevant objects, while discarding non-relevant objects
- Two aspects:
 - Ground truth
 - Evaluation metrics
Similarity search

- **Evaluation metrics**
 - Confusion matrix
 - True positives, True negatives, False positives, False negatives
 - Precision vs Recall curves
 - Mean average precision (MAP)
 - F-score
Similarity models

- Similarity models for images
 - Descriptors
 - Color histograms
 - Edge histograms
 - Morphological model
 - Problems
 - Image size
 - Noise
 - Occlusion

- Similarity models for 3D data
 - Descriptors
 - Global features (volumetric, surface, images)
 - Local features
 - Problems
 - Pose normalization
 - Noise
 - Holes
 - Non-rigid transformations
Similarity models

- Deep features (Example by Labrada)

Figure from: Arnul Labrada, Benjamin Bustos, and Ivan Sipiran. A convolutional architecture for 3D model embedding using image views. To appear in The Visual Computer.

PART II
INDEXING
Indexing

- How to compute a similarity query?
 - Given a dataset of size n and a query object q
 - Compute all distances between q and objects in dataset
 - So-called “sequential scan”
 - Complexity: $\Theta(n)$ distance computations
 - Problem: distance computation can be expensive
 - For vector spaces with dimensionality d
 - Minkowski distance: $\Theta(d)$
 - Quadratic forms: $\Theta(d^2)$
 - Earth Mover’s Distance: $O(d^2 \log d)$

Indexing

- Filter-and-refine
 - Let δ' be a distance that is “cheap” to compute and approximates δ
 - Filter irrelevant objects using δ'
 - Refine the candidate list using δ
 - If δ' is a lower bound of δ
 - Guaranteed that there will be no false negatives
Indexing: vector spaces

- Multidimensional index
 - Balanced trees (in general)
 - Each node corresponds to
 - A disk page / memory region
 - A space region
 - Two types of pages (nodes)
 - Data pages: leaves, contain data points
 - Directory pages: internal nodes that
 - Contain references to child nodes
 - Describe the spatial region of the child nodes

Indexing: vector spaces

- Basic structure
Indexing: vector spaces

- Spatial regions
 - Idea: store close points in the same data page or subtree
 - Can have different shapes
 - Bounding box
 - Hypersphere
 - Hypercube
 - Multidimensional cylinder
 - A combination of the previous shapes

- Hierarchy: a space region that defines a node must be completely inside the space region that defines the parent node
- Multidimensional indexes are dynamic structures (insertions, deletions)
Indexing: vector spaces

- Typical insertion procedure
 - Search for adequate data page (search new object, insert where it should have been found)
 - Add object to data page
 - In case of overflow, split node
 - Adjust space region information at parent node
 - If parent node overflows, split and proceed recursively
 - If root node split, create new root

Example: R-tree [Gut84]

Parameters:

- \(m = 2 \)
- \(M = 5 \)

![R-tree structure](image)

Indexing: vector spaces

- “Good” node split strategy?

or
Indexing: vector spaces

- "Good" node split strategy?

```
Bad strategy
or
Better strategy
```

Indexing: range queries

- Range queries with multidimensional index
Indexing: k-NN queries

- k-NN queries with multidimensional index
 - Result may be ambiguous
 - There is no radius value r that allows us to discard space regions a priori
 - Depth search (1-NN case)
 - Start with $\text{distNN} = \infty$, use distNN as search radius
 - Each time one computes a distance, update distNN if a better candidate is found
 - Use distNN to discard space regions
 - Problem: no guarantee that we visit the data pages in optimal order

- What if we knew a priori the value r_{kNN} = distance to the k-th NN to the query?
 - We could use directly the range search algorithm
 - This would minimize the number of visited data nodes
 - But, in practice we do not know that value…
 - Maybe we could try to estimate it?
Indexing: k-NN queries

- k-NN queries with multidimensional index
 - Priority search algorithm by Hjaltason and Samet [HS95]
 - Search nodes in the order given by the lower bound distances of the space regions to the query object
 - Guarantee that only visit data nodes that intersect to query region with \(r = r_{kNN} \), without knowing \(r_{kNN} \) a priori
 - Range-optimal algorithm
 - There is no inherent advantage on knowing or estimating \(r_{kNN} \)

Indexing: cost model

- What is the cost of a similarity search using a multidimensional index?
- Cost model [Böh00]
 - Range queries
 - Square regions, no overlaps
 - Space: unitary hypercube $[0,1]^d$
 - Volume of space = 1
 - Points (data and queries) uniformly distributed

Indexing: cost model

- Probability of accessing a page if $r = 0$ (point query)
 - Volume of space region
- Probability of accessing a page if $r > 0$
 - Transform the range query to a point query
 - Trick: enlarge each space region by r
 - Minkowski sum
 - Probability depends exponentially on d
Indexing: cost model

- Probability of accessing a page if $r > 0$
 - Moreover, high-dimensional spaces are strange
 - 2-D intuition is misleading
 - Almost all the volume is located at the border
 - One needs higher values of r to get some objects inside the query ball
 - Indeed, r could be larger than 1
 - That means, part of query ball is outside the space
 - Meaning of NN in high-dimensional spaces?

Indexing: metric spaces

- Metric index: try to minimize number of distance computations
- Basic ideas
 - Partition the space into “regions”
 - Discard “regions” during the search
 - Search on non-discarded “regions”
- Two main families
 - Pivot-based indexing
 - Compact partitions
Indexing: pivot-based indexing

- Pivot-based indexing

Discarding criterion:

\[
|\delta(p_i, q) - \delta(p_i, u)| > r
\]

Indexing: pivot-based indexing

- Search cost
 - Distances from query to pivots, plus
 - Distances from query to non-discarded objects
- There is a trade-off between number of pivots and search cost
- How to select the pivots?
 - Great topic! Ask me please at the end of the tutorial
Indexing: pivot-based indexing

- k-NN search using pivot-based indexing
 - Use closest pivot as starting candidate, then use diminishing radius technique
 - There is a range-optimal algorithm for pivot-based indexing

Indexing: compact partitions

- Divide the space in “compact regions” (objects close to each other)
- Each region has a representative object c
- Each region can be recursively partitioned
- Regions can be defined by
 - Voronoi partition
 - Covering radius
Indexing: compact partitions

- Example: covering radius

![Diagram showing covering radius with circles and points]

M-tree [CPZ97]
- Balanced tree
- Dynamic index
- Secondary memory
- Discard branches by using lower-bound distances to regions

Indexing: compact partitions

- **M-tree structure**
 - **External nodes**
 - Feature values of data objects
 - Distance from data object to its parent “routing object”
 - **Internal nodes**
 - Reference to parent node
 - Routing objects \(O_r \), for each of them:
 - Feature value of \(O_r \)
 - Reference to subtree corresponding to \(O_r \)
 - Covering radius of \(O_r \)
 - Distance from \(O_r \) to its parent routing object

Indexing: summary

- Are index techniques efficient in practice?
 - Short answer: No
 - They only work for very small dimension \(d \)
 - For high enough \(d \): cost equal to sequential scan
- Is the only solution a linear scan?
 - My opinion: for exact search, maybe 😊
 - For the moment, one can resort to
 - Distributed algorithms
 - Approximate algorithms
Similarity join

- Given two datasets D_1 and D_2
 - Find all pairs (x, y) such that $x \in D_1$, $y \in D_2$, and x is similar to y using similarity criteria s
- Similarity criteria can be
 - range-based, or
 - nearest neighbor-based
 - k-NN
Similarity join

- Computing a similarity join
 - Nested loop
 - Index the data first
 - An index for each similarity model
 - Static dataset vs dynamic dataset

Self-similarity join

- Particular case
 - $D = D_1 = D_2$
 - Let $n = |D|$ be the size of the dataset

- Naive algorithm for self-similarity join
 - Compute all pairs of distances (nested loop)
 - This costs $\theta(n^2)$ distance computations

- In practice, this is computationally expensive

Can we improve the efficiency?
Approximate self-similarity join

- Approximate technique [FBR20]
 - No guarantee of obtaining the exact result
 - Trade-off between efficiency and effectiveness
- Let $q \in D$ and $k \geq 1$ (integer)
 - $Q_k(D, q)$: exact answer of k-NN query for q
 - $Q_a(D, q, k)$: approximate result for $Q_k(D, q)$

$$\text{Precision} = \frac{|Q_k(D, q) \cap Q_a(D, q, k)|}{k}$$

Root-join algorithm: first idea

- Algorithm for 1-NN self-similarity join
Root-join algorithm: first idea

- Build \sqrt{n} groups of size \sqrt{n}

For each object in the set, compute the NN only within its group

AMW 2023 - Tutorial: Multimedia Databases
Santiago, Chile, May 22, 2023
Root-join algorithm: first idea

- Building the groups
 - Select \sqrt{n} random objects from the dataset as centers
 - Assign each object to the group of its closest center
 - If group is full, try with the second closest center
 - If that group is full too, try with the next closest center
 - Etc.

Complexity analysis (distance computations)
- Selecting the centers: 0 distance computations
- Forming the groups: $n\sqrt{n}$ distance computations
- Computing the 1-NN similarity join:
 - $\sqrt{n^2} = n$ distance computations for group
 - $\Rightarrow n\sqrt{n}$ distance computations in total
- Total cost: $0 + n\sqrt{n} + n\sqrt{n} = \Theta(n^{3/2})$ distance computations
Root-join algorithm: first idea

- Some observations
 - One could benefit from enlarging the groups
 - E.g., groups of $c\sqrt{n}$ objects
 - If c is $\Theta(1)$, the total cost is $\Theta(n^{3/2})$ distance computations
 - This indeed improves the precision of the result
 - How to modify the algorithm for the k-NN self-similarity join?

Root-join algorithm

- Select \sqrt{n} random objects as centers
- Distribute remaining objects on the groups
 - Groups have a maximum size of $c\sqrt{n}$
 - If the group where an object should be sorted into is already full, try with the next closest group
- For each object
 - Search k-NN within its group and the next closest group
 - Add more groups if necessary
Root-join algorithm

- Complexity analysis (distance computations)
 - Parameters c and k constants
 - Selecting the centers: 0 distance computations
 - Forming the groups: $n\sqrt{n}$ distance computations
 - Computing the k-NN similarity join:
 - Worst case for an object: $\max\{2c\sqrt{n}, k - 1 + c\sqrt{n}\} = \Theta(\sqrt{n})$ distance computations
 - Total cost: $0 + n\sqrt{n} + n\Theta(\sqrt{n}) = \Theta(n^{3/2})$ distance computations

Table 1

<table>
<thead>
<tr>
<th>Dataset</th>
<th>c</th>
<th>$k = 1$</th>
<th>$k = 4$</th>
<th>$k = 8$</th>
<th>$k = 16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECAF</td>
<td>1</td>
<td>18.55%</td>
<td>17.22%</td>
<td>16.32%</td>
<td>15.48%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31.75%</td>
<td>30.26%</td>
<td>28.65%</td>
<td>27.25%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37.94%</td>
<td>35.69%</td>
<td>34.26%</td>
<td>32.38%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>44.31%</td>
<td>41.41%</td>
<td>39.14%</td>
<td>38.19%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>44.80%</td>
<td>41.93%</td>
<td>40.31%</td>
<td>37.91%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>45.16%</td>
<td>41.92%</td>
<td>41.21%</td>
<td>38.49%</td>
</tr>
<tr>
<td>HOG</td>
<td>1</td>
<td>20.18%</td>
<td>18.90%</td>
<td>18.06%</td>
<td>17.16%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>36.80%</td>
<td>34.32%</td>
<td>32.80%</td>
<td>31.10%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>42.18%</td>
<td>39.53%</td>
<td>37.89%</td>
<td>35.29%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>45.77%</td>
<td>42.77%</td>
<td>41.29%</td>
<td>38.94%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>45.74%</td>
<td>42.68%</td>
<td>40.57%</td>
<td>38.81%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>46.08%</td>
<td>42.88%</td>
<td>41.06%</td>
<td>39.03%</td>
</tr>
<tr>
<td>STRINGS</td>
<td>1</td>
<td>15.54%</td>
<td>15.86%</td>
<td>15.08%</td>
<td>13.24%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23.66%</td>
<td>24.55%</td>
<td>23.08%</td>
<td>20.11%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24.68%</td>
<td>26.26%</td>
<td>25.46%</td>
<td>22.56%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>25.07%</td>
<td>25.87%</td>
<td>25.06%</td>
<td>22.92%</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>25.82%</td>
<td>26.71%</td>
<td>25.25%</td>
<td>22.45%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>24.64%</td>
<td>26.92%</td>
<td>24.05%</td>
<td>22.16%</td>
</tr>
</tbody>
</table>

Similarity join and query languages

- How to formalize a similarity join in a query language
- Proposal by Ferrada et al. [FBH20]
 - Extend SPARQL with similarity join operator

Similarity join and query languages

AMW 2023 - Tutorial: Multimedia Databases
Santiago, Chile, May 22 2023
Final remarks

- Similarity concept is core to Multimedia Databases
- Many practical applications
 - Manufacturing industry
 - Computational science
 - Cultural heritage
 - Biometry
 - Pattern recognition
 - …

Final remarks

- Challenges
 - Efficient ways for computing similarity joins
 - Dynamic similarity models
 - How to optimize the query processing?
 - Non-metric distances
 - Indexing methods for this type of spaces?
 - New operators related with “similarity”
 - Reverse nearest neighbors
 - Multimodal data
Tutorial: Multimedia Databases

Prof. Benjamin Bustos

Millennium Institute Foundational Research on Data
Department of Computer Science
University of Chile